eldorado.tu-dortmund.de/server/api/core/bitstreams/19d14213-116b-46c9-9210-9383e61d2177/content
Fix(α′′β′′γ′′) = {(x4, x4, x6, x6) + Λ′|x4, x6 ∈ R} Fix(α′′2β′′γ′′) =
⋃ ε1,ε2∈{0,1}{(
1 2 ε1, x5, x6,
1 2 ε2) + Λ′|x5, x6 ∈ R}
Fix(α′′3β′′γ′′) = {(x4,−x4, x6,−x6) + Λ′|x4, x6 ∈ R}
The fixed locus of β′′ [...] pε1,ε2,ε3,ε4,ε5,ε6 (or qε1,ε2,ε3,ε4,ε5,ε6) to 32 circles p̃ε1,ε2,ε3,ε4,ε5,ε6 (or q̃ε1,ε2,ε3,ε4,ε5,ε6). p̃ε1,ε2,ε3,ε4,ε5,ε6 is identified with p̃ε1,1−ε2,ε3,ε4,ε5,ε6 and q̃ε1,ε2,ε3,ε4,ε5,ε6 is identified with [...] and vice versa. We have
γ′′(1 2 λ1,
√ 3
6 λ1,
1 2 λ2,
√ 3
6 λ2) = (−1
2 λ1,
√ 3
6 λ1,−1
2 λ2,
√ 3
6 λ2)
Since the difference between (1 2 λ1,
√ 3
6 λ1,
1 2 λ2,
√ 3
6 λ2) and its image is a lattice vector …